If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20u^2+3u=5u^2+5u+1
We move all terms to the left:
20u^2+3u-(5u^2+5u+1)=0
We get rid of parentheses
20u^2-5u^2+3u-5u-1=0
We add all the numbers together, and all the variables
15u^2-2u-1=0
a = 15; b = -2; c = -1;
Δ = b2-4ac
Δ = -22-4·15·(-1)
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-8}{2*15}=\frac{-6}{30} =-1/5 $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+8}{2*15}=\frac{10}{30} =1/3 $
| 2x-5=8x-41 | | 2(x-4)+3(x+5)=0 | | 1/6t+5/6=t | | 8a+2=12+8a | | 1/6t=5/6=t | | (3-2*2^(1/2))^x+(3+2*2^(1/2))^x=6^x | | (3-2*2^(1/2))^x+(3+2*(2)^(1/2))^x=6^x | | 3(x+2)-4(x+1)=7 | | 6t–12=12t+6 | | 19r+-11r+-13r−7r+3r=1819r+-11r+-13r-7r+3r | | 81x-2=4√27 | | 2x+7x-3=30 | | 122-3x=180 | | 4(4-4n)=96 | | 2(x-7)+3=10 | | 19r+-11r+-13r−7r+3r=18 | | -3(2x+7)=4-6(x+3) | | 3x²+7x+2=0 | | 33(1+(1+x)^2+(1+x)^3+(1+x)^4+(1+x)^5+(1+x)^6+(1+x)^7+(1+x)^8+(1+x)^9+(1+x)^10+(1+x)^11)=450 | | 6x+6=3x–6 | | 13x^+20x-92=0 | | -6x-7(-5x-15)=-11 | | (18-x)/(2.40-25)=(18-25)/(2.40-39.43) | | 134+15x=12x+8 | | 108=5x+10 | | 9m+66=-60 | | -w/3=-20 | | 7/8-3k1/2k=1/4 | | 104=8(3x-3) | | 4/3x-17-5/9x=7 | | x−12=10 | | (7x+9)/2=29 |